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Abstract In this paper, a novel boundary element formulation for the deformation of a viscous
2D-planar cylindrical geometry, immersed in a different viscous fluid and moving towards a rigid
wall, is proposed for moderate Reynolds number, considering surface tension effects. The
boundary integral formulation for Stokes flow inside and outside the geometry is represented in
terms of a combined distribution of a single-layer and a double-layer potential of Green functions
over the geometry surface. Additionally, non-linear terms describing effects absent in pure Stokes
flow, such as the time derivative of the velocity and inertia, are included. These effects lead to the
appearance of domain integrals. Traditional dual reciprocity is applied in order to approximate
these domain integrals by a series of particular solutions which are then transformed into
boundary integrals. Augmented thin-plate splines, i.e. r2log(r), plus three additional linear terms
from a Pascal triangle expansion were chosen for the dual reciprocity approximation. In order to
avoid the discretization of the rigid wall, and using the fact that the velocity on the wall must vanish
due to the no-slip condition, the fundamental solution was modified with a combination of image
singularities including an image Stokeslet, a potential dipole and a Stokes-doublet.

Introduction
Over the years, boundary integral formulations have been used in order to
study the motion of drops and bubbles in pure Stokes flow. Using Green’s
integral representation formulae for the fluids inside and outside the drop, a
second kind Fredholm integral equation is obtained in terms of the velocity and
the surface tractions. More details can be found in the works of Power and
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Partridge (1994), Power and Wrobel (1995), Pozrikidis (1990, 1992) and Rallison
and Acrivos (1978, 1984).

Several numerical techniques have been used to simulate the drop
deformation, such as finite differences (Hatta et al., 1995, 1997) and finite
volume (Bussmann et al., 1999; Passandideh-Fard et al., 1996). However, these
methods require domain discretization. The boundary element method (BEM)
offers the great advantage in that it reduces the spatial dimension of the
problem by one, expressing the governing equations by boundary-only
equations. It has been used in several works to simulate the dynamics of drops
in linear problems, like potential flows (Cheng, 2000; Weiss and Yarin, 1999,
1995) and homogeneous Stokes flows (Power and Partridge, 1994; Pozrikidis,
1990, 1992; Primo et al., 2000; Rallison and Acrivos, 1978, 1984).

The BEM has been limited to linear problems because the fundamental
solution or Green’s function is required to obtain a boundary integral formula
equivalent to the original partial differential equation of the problem. The
non-homogeneous terms accounting for non-linear effects and body forces were
included in the formulation by means of domain integrals, making the method
lose its boundary-only character. At present, there are different approaches to
overcome these problems. One of the most efficient ones is the dual reciprocity
method (DRM), which is the technique used throughout this work to deal with
non-linear terms in the momentum equations. The basic idea behind the DRM
approach is to approximate the non-homogeneous terms as a series of known
functions and in this way obtain a series of particular solutions to the original
equation. According to Gomez and Power (1997) the classical DRM works well
for Reynolds numbers up to 200. In our applications, such as blending and
painting, we will remain at Reynolds number under 200.

In this work, we report on a new formulation that combines the classical
BEM equations for drop deformation in Stokes flow, developed and used by
Power (1996), Power and Wrobel (1995), Pozrikidis (1990, 1992) and Rallison
and Acrivos (1978, 1984), with the DRM, in order to simulate the full
Navier-Stokes equations. The proposed model simulates the 2D-planar
cylindrical geometry deformation phenomena for moderate Reynolds
numbers, and in the presence of a rigid wall and surface tension effects. In
the future, this work will be extended to 3D viscous drop deformation. Due to
the fact that future formulations will actually deal with 3D geometries a 2D
planar cylindrical formulation is more easily transferred when compared to an
axis-symmetric formulation.

In the subsequent section, we state the problem. Thus, the governing partial
differential equation is transcribed into an integral representation; for the
non-linear terms, i.e. the terms describing the deviations from the pure Stokes
flow, the DRM is applied. The numerical implementation is described and two
cases are tested, and the results are compared with the pure Stokes solution.
Finally, the results are interpreted and discussed.
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Problem statement
Consider a 2d-planar cylindrical geometry of viscosity m2 and density r2, which
is immersed in a fluid of viscosity m1 and density r1, and which has interfacial
surface tension g. It should be noted that in this formulation m1 and m2

represent Newtonian viscosities. Figure 1 shows the problem schematically.
The governing equations for both the external and internal fluid are the
Navier-Stokes equations, rewritten here as follows,

ml
›2ui

›xj›xj

2
›p

›xi

¼ rl
›ui

›t
þ uj

›ui

›xj

� �
for all x [ Vl ð1Þ

›ui

›xi

¼ 0 ð2Þ

where l ¼ 1; 2 represent the external and internal fluid, respectively, u is the
velocity field, p the pressure or the modified pressure, depending on if the
gravity is included or not in the analysis, and V ¼ V1 þV2 a planar
two-dimensional domain.

The flow field has to satisfy the following boundary conditions,

ui ¼ 0 for all x [ Wall ð3Þ

Figure 1.
Problem schematic
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½ui�G ¼ 0 ð4Þ

½sijnj�G ¼ fr1ðb2 1Þgi þ gkni for all x � Wall ð5Þ

where [] G denotes the jump across the surface G from outside V1 to the inside
V2, n is the outward normal unit vector, k is the surface curvature, f defines
the presence of the gravity field with values 0 or 1, g is the gravity field, b is the
density ratio defined as b ¼ r2=r1 and sij the stress tensor defined as,

sij ¼ 2pdij þ ml
›ui

›xj

þ
›uj

›xi

� �
ð6Þ

where dij denotes the Kronecker delta function.

Integral formulation and the DRM
The integral representation formulae for the velocity fields are found from
Green’s formulae for Stokes equations given by Ladyzhenskaya (1963). In the
exterior problem it will be,

uiðx0Þ2

Z
G

Kijðx;x0ÞðujðxÞÞ1 dG ¼ 2
1

m1

Z
G

u j
i ðx;x0ÞðsjkðuðxÞÞÞ1nkðxÞ dG

þ
1

m1

Z
V1

u j
i ðx;x0Þd

1
j ðxÞ dV

ð7Þ

for every x [ V1, where (u(x))1 and (sij(u(x)))1 are the values of the velocity
field u and of the stress sij(u(x)), respectively, at a point x [ G coming from V1.

For the fluid in the drop, the Green’s representation formulae is given by,

uiðx0Þ þ

Z
G

Kijðx;x0ÞðujðxÞÞ2 dG ¼
1

m2

Z
G

u j
i ðx;x0ÞðsjkðuðxÞÞÞ2nkðxÞ dG

þ
1

m2

Z
V2

u j
i ðx;x0Þd

2
j ðxÞ dV ð8Þ

for every x[V2, where (u(x))2 and (sij(u(x)))2 are the values of the velocity field u
and of the stress sij(u(x)), respectively, at a point x [ G coming from V2.

For equations (7) and (8) d l is the non-homogeneous term or pseudo-body
force defined as follows,

dl
i ¼ rl

›ui

›t
þ uj

›ui

›xj

� �
ð9Þ
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Assuming that the densities of both fluids are constant, the non-linear terms
can be normalized with respect to the densities, i.e.

dl
i ¼ rldi for l ¼ 1; 2 ð10Þ

From condition (4) it can be concluded that ðuðxÞÞ1 ¼ ðuðxÞÞ2 ¼ uðxÞ; for
every point x [ G. Letting a point x [ V1 approach a point j [ G; equation
(7) changes to,

c1
ijuiðx0Þ2

Z
G

Kijðx;x0ÞujðxÞ dG ¼ 2
1

m1

Z
G

u j
i ðx;x0ÞðsjkðuðxÞÞÞ1nkðxÞ dG

þ
1

m1

Z
V1

u j
i ðx;x0Þd

1
j ðxÞ dV

ð11Þ

In the same way, letting a point x [ V2 approach a point j [ G; equation (8)
will be,

c2
ijuiðx0Þ þ

Z
G

Kijðx;x0ÞujðxÞ dG ¼
1

m2

Z
G

u j
i ðx;x0ÞðsjkðuðxÞÞÞ2nkðxÞ dG

þ
1

m2

Z
V2

u j
i ðx;x0Þd

2
j ðxÞ dV ð12Þ

The coefficients c1
ij and c2

ij depend on the shape of the surface G around the
point x. If G is smooth in x, both the coefficients are equal to dij/2. In the present
work, the surface was assumed to be smooth during deformation, then the
assumption can be acceptable also for the contact point, between the internal
fluid, external fluid and the wall, when the wetting angle is p. In a more general
formulation, the coefficient for this contact point can be found using the
wetting angle as follows (Pozrikidis, 1992),

cij ¼
u

2p
ð13Þ

where u is the wetting angle.
In order to express the domain integral in equations (11) and (12) into

equivalent boundary integrals several methods have been developed (Cheng,
2000; Florez, 2000; Goldberg and Chen, 1997; Liao, 1997; Power and Mingo,
2000). The dual reciprocity approximation introduced by Nardini and
Brebbia (1982) is one such method, where the basic idea is to expand the
non-homogeneous terms or pseudo-body forces as a series of known
interpolation functions. Several types of non-linearities can be approximated
with this method, such as non-Newtonian fluids (Davis, 1995; Davis and
Osswald, 1995; Florez, 2000; Hernandez, 1999; Rios, 1999), full Navier-Stokes

HFF
13,6

702



equations (Florez, 2000; Florez and Power, 2001; Florez et al., 2000; Power
and Mingo, 2000) and transient problems (Power, 1993). Full details of the
dual reciprocity approximation can be found in the work of Wrobel and
Brebbia (1987) or Partridge et al. (1991). A brief description of the method
starts with the expansion of the non-linear term d using radial or global
interpolation functions, i.e.

diðxÞ ¼
XNþA

m¼1

f ðx;xmÞam
l dil ð14Þ

The coefficients of am
l are unknown terms, which can be solved for by the

application of equation (14) at each of the collocation nodes located on both
the boundary, and the internal and external domain, where the non-linear
terms are approximated. The functions f(x,xm) depend only on geometry.
There are two types, radial basis functions and global functions. It will be
considered here that in addition to the radial basis functions there are A ¼ 3
augmentation global functions from the set {1,x1,x2}, arriving to the
so-called augmented spline, which consists of the radial basis function plus a
series of additional global functions (Goldberg and Chen, 1996, 1997). As
pointed out by Partridge (2000) there are criteria for selecting the type of the
approximation functions. The radial basis function used in this work is the
thin-plate spline (TPS),

f ðx;xmÞ ¼ r 2 logðrÞ ð15Þ

where r ¼ rðx;xmÞ is the Euclidean distance between the field point x and
the collocation point xm. Equation (14) when applied to the N collocation
nodes generates 2N linear equations with 2(N+A) unknowns and therefore
2A additional conditions are necessary which basically guarantee maximum
smoothness of the interpolant (Florez, 2000; Goldberg and Chen, 1996, 1997).
These additional relationships are expressed as,

XN

j¼1

a
j
l dil ¼

XN

j¼1

x j
1a

j
l dil ¼

XN

j¼1

x j
2a

j
l dil ¼ 0 ð16Þ

where x j represents the jth collocation node.
With the approximation given in equation (14), the domain integral in

equations (11) and (12) becomes,Z
V

u j
i ðx;x0ÞdiðxÞ dV ¼

XNþA

j¼1

am
l

Z
V

u j
i ðx;x0Þf ðx;x

mÞdil dV ð17Þ

To reduce the last domain integral to a boundary integral, a new auxiliary
non-homogeneous Stokes’ field is defined for each interpolation function as
follows,
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m
›2ûlm

i ðxÞ

›xj›xj

2
›p̂ lmðxÞ

›xi

¼ f mðxÞdil ð18Þ

›ûlm
i

›xi

¼ 0 ð19Þ

where ûlm
i is the auxiliary non-homogeneous velocity field with the

corresponding pressure p̂ lm: Applying Green’s identities to the flow field�
ûlm

i ðxÞ; p̂ lmðxÞ
�

and substituting the resulting domain integrals into

equations (11) and (12), the following boundary-only integral formulae for
the velocity field is obtained,

1

2
uiðx0Þ2

Z
G

Kijðx;x0ÞujðxÞ dGþ
1

m1

Z
G

uj
iðx;x0ÞðsijðuðxÞÞÞ1njðxÞG dG

¼
XNþA

m¼1

r1

m1
am 1

2
ûlm

j ðxÞ2

Z
G

Kijðx;x0Þû
lm
j ðx;xmÞ dG

�

2

Z
G

uj
iðx;x0Þt̂

lm

j ðx;xmÞ dG

�
ð20Þ

1

2
uiðx0Þ þ

Z
G

Kijðx;x0ÞujðxÞ dG2
1

m2

Z
G

uj
iðx;x0ÞðsijðuðxÞÞÞ2njðxÞG dG

¼
XNþA

m¼1

r2

m2
am 1

2
ûlm

j ðxÞ þ

Z
G

Kijðx;x0Þû
lm
j ðx;xmÞ dG

�

2

Z
G

u j
i ðx;x0Þt̂

lm

j ðx;xmÞ dG

�
ð21Þ

The analytical expression for the auxiliary Stokes flow field
�

ûlm
i ðxÞ; p̂ lmðxÞ

�
corresponding to the TPS interpolation can be found by the approach
suggested by Power and Wrobel (1995). They are developed and listed in
Appendix. The particular solution for velocity, inside or outside, are identical,
since the equations were normalized using the density according to
equation (10). However, the traction particular solutions are of opposite sign,
due to the direction of the normal vector.
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Multiplying equation (21) by l ¼ m2=m1; and adding to equation (20) gives,
1

2
uiðx0Þ2 a1

Z
G

Kijðx;x0ÞujðxÞ dGþ a2

Z
G

uj
iðx;x0Þ

	
sijðuðxÞÞnjðxÞ



G

dG

¼ a4

XNþA

m¼1

am 1

2
ûlm

j ðxÞ2 a3

Z
G

Kijðx;x0Þû
lm
j ðx;xmÞ dG

�

2

Z
G

u j
i ðx;x0Þt̂

lm

j ðx;xmÞ dG

�
ð22Þ

where,

a1 ¼
ð1 2 lÞ

ð1 þ lÞ
; a2 ¼

1

ðlþ 1Þm1
; a3 ¼

ð1 2 bÞ

ð1 þ bÞ
; a4 ¼

ðbþ 1Þr1

ðlþ 1Þm1
: ð23Þ

Similarly, Power and Wrobel (1995), Pozrikidis (1990) and Rallison and Acrivos
(1978) found a second kind Fredholm integral similar to equation (22). The
parameter of the Fredholm equation is the same and equal to a1, but the free or
non-homogeneous term does not include the dual reciprocity approximation
given in equation (22). In fact, this is the additional term that completes the new
formulation proposed in this paper.

Without the influence of the rigid wall, Green’s function uk
i under the second

integral in equation (22) is the fundamental solution of Stokes’ equation known
as Stokeslet, with a corresponding pressure q k. For planar two-dimensional
problems they are defined as,

uk
i ðxÞ ¼ 2lnðrÞdik þ

xixk

r 2

� �
ð24Þ

qkðxÞ ¼ 2
1

2p

xk

r 2
ð25Þ

and Kij represents the traction fundamental solution given by

KijðxÞ ¼ 24
xixjxk

r 4
nkðxÞ ð26Þ

Blake (1971) and Pozrikidis (1990, 1992) showed that in the presence of the rigid
wall in x2 ¼ w; u j

i ðxÞ may be expressed in terms of a Stokeslet, and a finite
collection of image singularities including an image Stokeslet, a potential dipole
and a Stokes-doublet,

wu j
i ðx;x0Þ ¼

1

4p
u j

i ðx̂Þ2 u j
i ð ~xÞ þ 2h2UD

ij ð ~xÞ2 2hUSD
ij ð ~xÞ

� �
ð27Þ
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where h ¼ x2;0 2 w is the distance of the point from the wall, x̂ ¼ x 2 x0;
~x ¼ x 2 xim

0 ; and xim
0 ¼ ðx1;0; 2w 2 x2;0Þ is the image of x 0 with respect to

the wall. The tensors UD and USD represent potential dipoles and Stokes
doublets. For two-dimensional planar domains, they are defined as,

UD
ij ðxÞ ¼ ^

›

›xj

xi

r 2

� �
¼ ^

dij

r 2
2 2

xixj

r 4

� �
ð28Þ

USD
ij ðxÞ ¼ ^

›u2
i

›xj

¼ x2U
D
ij ðxÞ^

dj2xi 2 di2xj

r 2
ð29Þ

with a plus sign for j ¼ 1; in the x1 direction, and a minus sign for j ¼ 2 in the
x2 direction. The associated pressure vector is given by,

wqiðx;x0Þ ¼ qiðx̂Þ2 qið ~xÞ2 2hqi
SDð ~xÞ ð30Þ

where

qi
SDðxÞ ¼ 2

2

r 4
ð2x1x2; x

2
1 2 x2

2Þ ð31Þ

The associated stress tensor is given by

wTijkðx;x0Þ ¼
1

4p
Tijkðx̂Þ2 Tijkð ~xÞ þ 2h2TD

ijkð ~xÞ2 2hTSD
ijk ð ~xÞ

� �
ð32Þ

The tensors TD and TSD may be computed by straightforward differentiation
using the following equations,

TD
ijk ¼

›UD
ij

›xk

þ
›UD

kj

›xi

ð33Þ

TSD
ijk ¼ 2dikq

j þ
›USD

ij

›xk

þ
›USD

kj

›xi

ð34Þ

Numerical implementation
For the numerical solution of equation (22) the surface of the geometry was
divided into smaller quadratic elements. Each element has three nodes and
equation (22) is applied to each node of every element. For the external or
internal points, equations (11) and (12) are applied, respectively. The surface
integrals that appear on those equations can be evaluated numerically using
Gauss-Legendre quadratures (Florez, 2000; Hernandez, 1999; Partridge, 1997).
However, special attention should be paid to the weakly singular integrals
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whose kernel is the Stokeslet uj
iðx;x0Þ when the source point tends to the field

point. This singularity can be dealt with by using a special coordinate
transformation (Telles, 1987).

After applying the dual reciprocity on each node and evaluating the
boundary integrals of the quadratic boundary elements, the following matrix
system is obtained

1

2
u 2 a1

�Hu þ a2Gt ¼ a4
1

2
Û 2 a3

�HÛ 2 GT̂

� �
a ð35Þ

where �H and G are square matrices whose entries are integrals of the product
of the corresponding kernel (wuj

iðx;x0Þ and wKijðx;x0Þ ¼
wTijkðx;x0ÞnkðxÞ)

by the shape functions that are used to interpolate along the boundary elements
(Brebbia and Dominguez, 1989; Brebbia et al., 1984). Vectors u and t are the
velocities and tractions, respectively; Û and T̂ are matrices whose columns
correspond to the particular solution of the auxiliary Stokes problem, and the
constants aiði ¼ 1; . . .; 4Þ are defined in equation (23). After some mathematical
manipulation equation (34) can be organized as follows,

Hu 2 Gt ¼
	
HdÛ 2 GdT̂



a ð36Þ

The unknown coefficient vector a is determined from equation (14). Using the
traditional dual reciprocity to approximate the derivatives of the velocity
(Hernandez, 1999; Partridge et al., 1991; Power and Wrobel, 1995), the unknown
coefficient vector becomes,

a ¼ F21 ›u

›t
þ uj

›F

›xj

F21

� �
u

� �
ð37Þ

For the time derivative in equation (37), a first order explicit time integration
scheme is employed. A linear approximation can be proposed for ui within each
time-step in the form,

›ui

›t
¼

1

dt
umþ1

i 2 um
i

 �
ð38Þ

Due to the fact that in the present problem there are moving boundaries, all the
matrices in equations (36) and (37), which depend on the geometry, vary in
time. Thus, equation (37), with (38) will be,

Smðumþ1 2 umÞ ¼ dt ðHu 2 GtÞ2 S uj ›F

›xj

F21

� �
u

� �� �m

ð39Þ

where

S ¼
	
HdÛ 2 GdT̂



F21 ð40Þ
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The rate of deformation of the drop is determined by the kinematic boundary
condition, which states that the normal component of the fluid velocity at any
point of the drop’s surface is equal to the normal component of the surface
velocity at that point,

dxi

dt
ni ¼ uini ð41Þ

Thus, for each time step the initial conditions are known, and with equation
(41) the coordinates are changed, and the matrices in equation (39) are
calculated. If the boundary node is not on the wall, the unknowns for the next
time-step are the velocities, and the tractions are calculated with the surface
tension coefficient and the curvature of the drop. Once the boundary node
touches the wall, the velocities are known, and the tractions are found.

With the use of equation (41) when solving the Navier-Stokes equation,
continuity is not fully satisfied since a point will inevitably leave its path
during advancement. To correct this problem the advancement of the surfaces
must be done iteratively using equation (41) and continuity.

In order to calculate the curvature of the drop in each point and for each
time-step Primo et al. (2000) implemented a simple procedure. The curvature
and normal vector are calculated by fitting a fourth-order Lagrangian
polynomial. Five nodal points are taken for the fitting, two to each side of the
centre node. The normal and the curvatures are then calculated from the
expressions,

niðx
cÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 0

1

 �2
þ x 0

2

 �2
q x 0

2

2x01

 !
ð42Þ

kðxcÞ ¼
x 0

1x
00
2 2 x 0

2x
00
1

x 0
1

 �2
þ x 0

2

 �2
� �3=2

ð43Þ

where

x 0
iðx

cÞ ¼
1

6
xc22

i 2 8xc21
i þ 8xcþ1

i 2 xcþ2
i

 �
ð44Þ

and

x 00
i ðx

cÞ ¼
1

3
2xc22

i þ 16xc21
i 2 30xc

i þ 16xcþ1
i 2 xcþ2

i

 �
ð45Þ

whose superscripts indicate the position of the node relative to the centre
node, c.
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Results
The calculations of the numerical examples presented in this paper were
obtained on an IBM compatible computer with two 2.0 GHz Pentium III
processors and 1.0 GB RAM. The number of Gauss points taken for the
numerical integration was 20. A mesh of 40 nodes and 41 internal nodes was
used (Figure 2). Typical computational times for the above parameters were of
the order of 1.0 min for 100 time steps.

Recovery due to surface tension effects
A simple way to check the new formulation qualitatively is to verify if the
geometry, when starting from an elliptical shape and under negligible gravity
effects ðf ¼ 0Þ and initial velocity, recovers its circular shape due to surface
tension.

Figure 3 shows the recovery for the Navier-Stokes case compared to the
recovery of the drop for the pure stokes flow. The viscosity for the internal fluid
was chosen as 1:0 £ 103 pa s and the internal density was 1:0 £ 103 kg=m3;
while for the external flow the viscosity was 1:0 £ 1026 pa s and the density
was 1:0 £ 1026 kg=m3: These values in conjunction with a typical value for the
recovery velocity, 0.01 m/s, and an average drop diameter, 0.001 m, will result in
a Reynolds number of 0.0001 for the internal fluid and 10 for the external fluid.
The surface tension was chosen as 0.01 N/m.

Inertia terms are not included in pure Stokes, and the circular geometry is
obtained and the velocities go to zero. For the initial steps of the recovery

Figure 2.
Drop discretization,
surface and internal

nodes
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the velocity reaches the maximum value. In the case of Navier-Stokes the
inertia effects create oscillations, the velocities start from zero, then reach the
maximum value and when the geometry passes the circular shape the velocities
change direction. The time derivative included in the present paper also causes
significant differences between the solutions. At the initial condition
the velocities are zero, then the geometry increases velocity. For the pure
stokes case this accelerating effect is not considered (Figures 4 and 5), and
the velocities start from a higher value and decrease until zero.

Figure 3.
Geometry change for the
recovery: (a) pure Stokes,
and (b) Navier-Stokes
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For the Navier-Stokes case, the velocities start from zero and increase and
decrease during the oscillation.

Finally, Figure 6 shows how the drop recovery can be reduced by increasing
the viscosity ð1:0 £ 104 Pa sÞ of the internal fluid or by decreasing its density
ð1:0 £ 102 kg=m3Þ: In other words, by increasing the viscous effects or by
decreasing the inertia effects.

Motion towards the rigid wall
The second way to check the formulation is simulating the motion of the drop
towards a rigid wall in a gravity field, starting from a circular shape and with

Figure 4.
Velocities in the

x-direction for the
recovery case: (a) pure

stokes, and
(b) Navier-Stokes
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zero velocity. The viscosity for the internal fluid was chosen as 1:0 £ 103 Pa s
and the internal density was 1:0 £ 103 kg=m3; while for the external flow the
viscosity was 1:0 £ 1026 Pa s and the density was 1:0 £ 100 kg=m3; which
represent an internal Reynolds number of 0.001 and an external Reynolds
number of 100. The gravity was set to 1.0e1 m/s2, surface tension to 0.01 N/m
and the time step to 1:0 £ 1022 s: In Figure 7 the pure Stokes and the
Navier-Stokes solution are compared. In the case of pure Stokes the motion is
faster at the beginning and at the end the geometry is far from the wall. The
external fluid near the wall has zero velocity and considering only viscous
effects the geometry will arrive at stagnation points. In the Navier-Stokes

Figure 5.
Velocities in the
y-direction for the
recovery case: (a) pure
Stokes, and
(b) Navier-Stokes
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Figure 6.
Navier-Stokes solution

for different internal
properties: (a) high

viscosity, and (b) low
density
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solution the geometry accelerates at the beginning and at the end is closer to
the wall, due to the inertia terms. The final shapes also present some
differences. In pure Stokes flow the geometry is flat at the bottom, while in the
Navier-Stokes solution the geometry still has a circular shape.

Conclusion
The new formulation, combining the boundary element classical approach for
the deformation of drops and the DRM was satisfactorily tested in to simple
cases and compared with the pure Stokes solution. Recovery under surface
tension effects and the motion towards a rigid wall in a gravity field were the
cases that help to prove that the new formulation can be used to include time
derivative and inertia effects at moderate Reynolds numbers.
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Appendix. The particular solutions for the 2D non-homogeneous stokes flow
To find the solution of the non-homogeneous Stokes system of equations (20) and (21), the
approach suggested by Happel and Brenner (1973) can be used. The tensor ûlm

i ðxÞ is defined in
terms of the potential c m as follows,

ûlm
i ðxÞ ¼

›2cmðxÞ

›xj›xj

dil 2
›2cmðxÞ

›xi›xl

ð46Þ

With the substitution of equation (46) into non-homogeneous Stokes flow, we will find a
particular solution c m if the following non-homogeneous bi-harmonic equation is satisfied,

m
›4cmðxÞ

›xj›xj›xj›xj

¼ f mðxÞ ð47Þ

together with the equation,

p̂ lmðxÞ ¼ 2m
›3cmðxÞ

›xj›xj›xl

ð48Þ

According to Cheng (2000) the particular solution of the bi-harmonic operator (47) defined
as,

›4cmðxÞ

›xj›xj›xj›xj

¼ r 2n logðrÞ n $ 1 in R 2 ð49Þ

is given by,

cmðxÞ ¼
r 2nþ4

16ðn þ 1Þ2ðn þ 2Þ2
logðrÞ2

2n þ 3

ðn þ 1Þðn þ 2Þ

� �
ð50Þ

More specifically for the present work ðn ¼ 1Þ;

cmðxÞ ¼
r 6

576
logðrÞ2

5

6

� �
ð51Þ

In a similar fashion the particular solution of the non-homogeneous bi-harmonic equation for
the global functions {1,x1,x2}, that depend not on the Euclidean distance r, but only on the
coordinates of the collocation node x ¼ ðx1; x2Þ; can be obtained (Cheng et al., 1994). The
results are summarized as follows,

cmðxÞ ¼
jxj

4

64
for f mðxÞ ¼ 1 ð52Þ
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cmðxÞ ¼
1

2

x5
1

120
þ

x3
1x2

2

24

� �
for f mðxÞ ¼ x1 ð53Þ

cmðxÞ ¼
1

2

x5
2

120
þ

x3
2x2

1

24

� �
for f mðxÞ ¼ x2 ð54Þ

Thus, the particular solution for the velocity can be obtained from equation (47), and the

tractions t̂
lm

i associated with it are defined as,

t̂
lm

i ¼ ŝijnj ð55Þ

where

ŝij ¼ 2p̂ lmdij þ m
›ûlm

i

›xj

þ
›ûlm

j

›xi

 !
ð56Þ

With the procedure explained above, the particular solutions for the velocity are:

ûlm
i ¼

1

96m
5r 4 log r 2

7

3
r 4

� �
dil 2 x̂ix̂l 4r 2 log r 2

5

3
r 2

� �� �
ð57Þ

for f m ¼ r 2 log r and x̂ ¼ x 2 xm:. On the other hand, for the global functions
f m ¼ {1; x1; x2} are,

ûlm
i ¼

1

16m
ð3jxj

2
dil 2 2xixlÞ ð58Þ

ûlm
i ¼

1

24m
x3

1ð3dil 2 2d1ld1i 2 d2ld2iÞ þ 3x2
2x1ðdil 2 d1ld1iÞ2 3x2

1x2ðd1ld2i þ d2ld1iÞ
	 


ð59Þ

and

ûlm
i ¼

1

24m
x3

2ð3dil 2 2d2ld2i 2 d1ld1iÞ þ 3x2
1x2ðdil 2 d2ld2iÞ2 3x2

2x1ðd1ld2i þ d2ld1iÞ
	 


; ð60Þ

respectively. Similar expressions are deduced for the tractions,

t̂
lm

i ¼
1

96
8r 2ðx̂inl þ x̂jnjdil þ x̂lniÞð2 log r 2 1=3Þ2 4x̂i x̂l x̂jnjð4 log r þ 1=3Þ
	 


ð61Þ

for f m ¼ r 2 log r;, and

t̂
lm

i ¼
1

4
xinl þ xjnjdil þ xlni

	 

ð62Þ
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t̂
lm

i ¼
1

8
x2

1 3ðn1dil þ nld1i þ nid1lÞ2 2ð2n1d1id1l þ n1d2id2l þ n2d1id2l þ n2d1ld2iÞ
	 
�

þx2
2 n1dil þ nld1i þ nid1l 2 2n1d1id1l

	 

þ 2x1x2ðn2dil þ nld2i þ nid2lÞ

24x1x2ðn2d1id1l þ n1d1id2l þ n1d1ld2iÞg

ð63Þ

and

t̂
lm

i ¼
1

8
x2

2 3ðn2dil þ nld2i þ nid2lÞ2 2ð2n2d2id2l þ n2d1id1l þ n1d2id1l þ n1d2ld1iÞ
	 
�

þx2
1 n2dil þ nld2i þ nid2l 2 2n2d2id2l

	 

þ 2x1x2ðn1dil þ nld1i þ nid1lÞ

24x1x2ðn2d2id1l þ n1d2id2l þ n2d2ld1iÞg

ð64Þ

for f m ¼ {1; x1; x2}; respectively.
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